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The “Law of Varying Action,” originally published by Hamilton in 1834, was recently 
employed by Bailey to generate power series solutions characterizing the motions of 
dynamical systems. Furthermore, this method enables the approximating series to be 
constructed in a simple and direct way, without using the associated differential equations of 
motion. The implementation of this new technique is presented here using, instead of ordinary 
power series, series with Shifted Legendre Polynomials as basis functions. The theory and 
applications are described in detail and numerical results are presented for two problems-(i) 
a lightly damped harmonic oscillator with one degree of freedom, (ii) two periodic orbits of 
the restricted three-body problem. The far superior performance of the Shifted Legendre 
Polynomial series is confirmed in both examples. 

INTRODUCTION 

Recently, Bailey [ 1, 21 made a rather surprising discovery regarding what is 
commonly referred to as “Hamilton’s Principle.” Upon examining Hamilton’s 
original papers [3,4] of 1834 and 1835 concerning “a general method in dynamics,” 
Bailey reached the conclusion that Hamilton had not formulated this principle but 
had instead developed a more comprehensive theory which he called “The Law of 
Varying Action” [3, pp. 249-2531. This Law of Varying Action yields approximate 
solutions of initial value problems associated with dynamical systems, and does so 
without any reference to differential equations of motion. 

In a previous paper [5] it was demonstrated how the law of varying action can be 
used to obtain approximate solutions of the well-known restricted three-body problem 
by using ordinary power series in the independent (time) variable. The purpose of this 
paper is to present the implementation of this new technique using Shifted Legendre 
Polynomials P,* (n = 0, 1, 2,...) as basis functions [6-8] for the approximating series. 
Indeed, it has been found that earlier difficulties with accuracy and convergence using 
ordinary power series have been totally eliminated by employing series in terms of 
these orthogonal polynomials. In particular, the necessary inverse of a rather large 
matrix is now determined with high precision in all cases whereas, previously, this 
matrix was rather poorly conditioned. 
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This paper is structured as follows. First, Hamilton’s Law of Varying Action is 
developed in its most general form. Second, series solutions are formulated for both a 
simple damped harmonic oscillator and for planar orbit motion in the restricted three- 
body problem. Third, numerical results are included for both example problems 
confirming the far superior performance of the Shifted Legendre Polynomial series in 
these applications. 

HAMILTON'S LAW OF VARYING ACTION 

By proceeding as follows’, a version of Hamilton’s Law of Varying Action can be 
obtained that is not encumbered by any appeal to the calculus of variations’ and, 
furthermore, is somewhat more general than that provided by Bailey. 

Let K denote the kinetic energy of a holonomic dynamical system characterized by 
generalized coordinates q, ,..., q,, let s ,,..., s, be any functions of the time t, and 
introduce the function @ as 

where F, is the generalized active force associated with qk (k = l,..., n). Integration of 
both sides of Eq. (1) with respect to time from t = t, to t = t, then gives 

Interchanging the order of integration and summation on the right-hand side and 
subsequently integrating the term (X/&j,) s’k by parts yields 

The term in square brackets in Eq. (3) vanishes by virtue of Lagrange’s equations, 
leaving the relation 

(4) 

which is a statement of Hamilton’s Law of Varying Action in its most general form. 
Several additional comments are now in order. First we note that Eq. (4) is 

I This idea is due to Professor T. R. Kane of Stanford University. 
’ A fundamental tenet in Bailey’s work [9] is that the concepts for the calculus of variations resulted 

in the simplification of Hamilton’s Law to Hamilton’s Principle and this, in turn, caused others to miss 
the computational possibilities inherent in Hamilton’s Law. 
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applicable to nonconservative as well as conservative dynamical systems. Further, 
nonstationary problems having time-variable parameter values or other non-constant 
properties can also be handled easily using Eq. (4) [ 1, pp. 443-4491. Second, it is 
important to observe that Hamilton’s Law is a fundamental principle governing the 
motion of dynamical systems. Quoting from [ 1, p. 4371, the significance of Eq. (4) is: 
“The natural path and/or configuration of a system of particles or a continuum will 
be that for which the time integral of the work of all forces acting, both natural and 
applied, is a minimum.” Third, we see that Eq. (4) does not require any knowledge of 
the underlying differential equations of motion. The power of Hamilton’s Law is 
simply that exact solutions of Eq. (4) necessarily satisfy the equations of motion. 
Furthermore, Bailey has performed checks [ 1, pp. 443-447; 2, p. 11561 verifying 
that approximate analytical solutions obtained from Eq. (4) do indeed satisfy the 
differential equations of motion to a fairly high precision (maximum error of a few 
hundredths of 1 %I). Accuracy checks are also included for the two example problems 
treated in this paper. 

For further descriptive material, the reader is referred to [ 1, 2,9] together with the 
references included therein. In the next section, the use of Eq. (4) to produce approx- 
imate solutions of dynamical problems will be described. 

APPROXIMATE SOLUTION 

For a problem with three degrees of freedom with generalized coordinates q,, q2 
and q3, it is typically assumed that each qi can be represented by a power series of 
the form 

q,(t) 
cl@ q2@) = qo + ilot + 2 B, (+oY, 

I 1 

‘4, 

q3(4 [ 1 
a=2 c a 

(5) 

where 

q. = q,(O) is the initial position, 
q. = q,(O) is the initial velocity, 
a is the appropriate index (i, k or m) corresponding to each of the coordinates 

(s, T q2 or q3), and 
ar is the appropriate upper limit (N, M or P). 

Thus, we have in general 

(6) 

and 

2<m<P for q3W. 
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Also, the desired time interval for the series representation is 0 < t < to so to is the 
final time. 

Similarly, the arbitrary functions Sk(t) in Eq. (4) are assumed to have the form 

(7) 

where 

/I is the appropriate index (j, I or n) corresponding to each of the variables 
(sr , sr or s3) and 

jI, is the appropriate upper limit (N, M, or P) so we have again 

2<j<N for s,(t), 

2<1<M for G>, (8) 

and 

2<n<P for s3(t). 
Then, inserting Eqs. (5) and (7) into Eq. (4) and integrating yields a matrix 

equation of the general form 

where, because of linearity in sk, the unknown constants aj, b, and c, have cancelled 
out on each side of the resulting three equations in (9). The matrix M, which is of 
dimension (N + M + P - 3) x (N + M + P - 3), can be inverted once and for all 
while the forcing functions Uj, V, and W,, are generally functions of the initial 
conditions and the unknown solution q(t); i.e., functions of the unknown constants 
Ai, B, and C,. This is handled quite simply on the computer, however, by iteration 
in the following way. 

First, Ai, B, and C, are all set equal to zero in the functions Uj, V, and W,. These 
functions are then evaluated and Eq. (9) is solved for Ai, B, and C,. Finally, this 
procedure is repeated until the differences between successive determinations of these 
unknown coefficients have all become less than some prescribed value, for example, 
lo-lo. 

For the two periodic orbits considered in Example II (the restricted three-body 
problem), convergence to this precision is usually achieved in 5 to 15 iterations. 
Furthermore, these iterations are simplified since M must only be inverted once. The 
reader is referred to [ 11, [2 1 or [5 ] for further details on the implementation of 
Eq. (4) with power series. 
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Now, after these preliminaries, the primary purpose of this section can be fulfilled. 
This is to present the assumed solution form when Shifted Legendre Polynomials PT 
are used as basis functions. Necessary details relative to the mathematical properties 
of these orthogonal functions are discussed in the Appendix. Setting 

x e t/t, (10) 

so 0 < z < 1, the solution for a problem with a single degree of freedom q(t) is 
assumed of the form 

q(t)= i AiPf(Z) 
i=O 

=A, +A,PT + 2 A,PT 

(11) 

i=2 

since PO*(z) = 1. 
The idea is first to solve for the Ai (i = 2, 3,..., iV) and then use the known initial 

conditions 
40 4 q(O), 
40 4 4(O) 

to determine the final unknowns A, and A,. In particular, consider 

A,z+tAig 
i=2 

which is rewritten 

since P?(G) = 2~ - 1 and dz/df = I/t,. Using (A3) then gives 

where 

since 

A, =$doto + f giAi, 
i=2 

gi&+(-l)‘i(i+ l)Ef(-l)ihi 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) hi 6 i(i + 1). 
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Similarly, the final unknown A, can be determined by the formula 

AO=qO++40tlJ+ 5 hAi, (18) 
i=Z 

where 

J;: 4 4(-l)’ [hi - 21. (19) 

In this way, the initial conditions q,, and do are neatly incorporated into the 
formulation and, in fact, inserting Eqs. (18) and (15) into Eq. (11) then yields 

q([) = 40 + f40tO(Pf + pt) + 5 (fi + giPT + pf) A i 
i=Z 

(20) 

as the final form of the assumed solution after the unwanted constants A, and A, 
have been eliminated. 

Following the same procedure as for the ordinary power series, 
arbitrary function s(t) takes the form 

a = i (fj + g$y(x) + P,*(z)) uj. 
j=l 

The motivation for this can be viewed in either of two ways: 

(i) Since we are solving for only N - 1 coefficients A i, for a completely deter- 
mined system of equations we need only N- 1 arbitrary constants aj. (This will be 
seen more clearly in the sample problems.) 

(ii) If we consider s(t) to represent a variation (perturbation) dq(t) from the 
actual path q(t), then, for fixed initial conditions, we obtain 

we assume that the 

(21) 

6A,= 2 fi6Ai&aa, 
i=2 

(22) 

and 
dA,= 5 gi6Ai&za, (23) 

i=2 

from Eqs. (18) and (15) respectively. Consequently, 

s(t)= 5 UjPj*Q) 
.j=O 

becomes 

S(t)  = 5 (fj+ gjPT +Pj*laj9 
j=2 

(24) 

which is identical to the original form (21). 
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In summary, there are N + 1 unknowns in Eq. (11) together with two fixed initial 
conditions given by Eqs. (12). This leaves N - 1 unknowns A i as shown in Eq. (20). 
Thus, for a completely consistent system, only N - 1 additional constants aj are 
needed as given by Eq. (21). Furthermore, it is important to note that the represen- 
tation given by Eq. (21) is by no means unique. In order to simplify the calculation, 
s(t) is formulated in terms of Shifted Legendre Polynomials in such a way that 
s(O) = s’(O) = 0. Neither of these restrictions is required and, for various problems, 
other choices might be preferable. In particular, if we retain the PT but drop the 
simplification of s(O) = s’(O) = 0, two other admissible series representations are 

N-2 

s(t) = x UjPjy,), 
j=O 

(21’) 

rv- I 

s(t) = c qPj*(,). 
j=l 

(21”) 

However, a detailed examination of these alternatives is outside the scope of the 
present paper. 

EXAMPLE I. DAMPED HARMONIC OSCILLATOR 

In order to test the application of Eq. (4) in the simplest possible case, the first 
sample problem considered is the simple damped harmonic oscillator. The 
appropriate differential equation of motion is 

mitcdtkx=O, (26) 

corresponding to a mass m connected to a linear spring with restoring force kx and a 
linear viscous damper with damping force d. For this single degree of freedom test 
case, the ingredients needed for the function Cp defined in Eq. (1) are 

41 -xx, 
F, = -kx - cl, 

K = $niz, 

s, = sx, 

(27) 

so we have 

@ = -(kx + ci) s, + mis’,. (28) 

Setting t, = 0 and t, = to in Eq. (4), we write Hamilton’s Law of Varying Action as 

to 

I[ ( 
- 

0 
kx+$i) s,tii,] dt-is,,:=o (29) 
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COMPARISON OF SOLUTIONS - APPROX VS EXACT 
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FIG. 1. Exact (solid line) and approximate (dotted line) solutions for the damped harmonic 
oscillator. The Shifted Legendre Polynomial series contains eight terms (N= 8). 

after dividing by m. Transforming to the independent variable = = t/t, given by 
Eq. (lo), we have 

f(+=( .)=$! )~=$(x,~ (30) 

so Eq. (29) becomes 

x’s, d.c + x’s; dli = x’s, I:, . (31) 

Now, assuming that x and s, can be represented by the P:(S) series given in 
Eqs. (20) and (21), respectively, we find, upon substituting into Eq. (31) and using 
the orthogonahty given by Eq. (A6) in the Appendix together with the two special 
functions F,(n, m) and Fz(n, m) defined there by Eqs. (A14) and (A16), that 
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MjiAi- Uj 1 aj=O, 

where 

M/i G F2(j, i) + gj(2 - hi) F,(i, 0) - fjhiF,(i, 1) - hi[ 1 + (-l)j+i] 

- 2 {2& gi + hFI(j, 0) + gjFl(i, l) + F,(i? j)} 

-2  I;/.+fgjgi+&l; 

I 

Ujn~l,i;+~{Xofi+ii.f~(~+jgj)}; 

COMPARISON OF SOLUTIONS - APPROX VS EXACT 

z 
SEC 1 N = 12 
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(32) 

(33) 

(34) 

FIG. 2. Exact (solid line) and approximate (dotted line) solutions for the damped harmonic 
oscillator. The approximating series now has N = 12. 
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and 4, gj and hi have been defined previously in Eqs. (19), (16) and (17). Since 
Eq. (32) is valid for any choice of Uj, it follows that 

for j = 2,..., N, (35) 

which, when written in matrix form, is simply 

MA=U. (36) 

Next, examining Eq. (33), we see that the matrix elements Mji are completely 
determined once m, c, k, t, and the row and column indices j and i are specified. 
Similarly, the right-hand-side U given by (34) is known once m, c, k, t,, the row 

COMPARISON OF SOLUTIONS - APPROX VS EXACl 

FIG. 3. The difference s(t) (defined as the exact solution minus the approximate solution) for the 
case shown in Fig. 2. For comparison, note that the maximum amplitude in Fig. 2 is 1.0. 
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index j and the initial conditions x0 and i,, are chosen. Hence, the unknown constants 
Ai are given explicitly by 

A=M-%I. (37) 

Numerical tests were performed for the particular case M = c = 1 and k = 25, 
corresponding to 

(38) 

so o, = 5 and [ = 0.1. (The underdamped case was chosen specifically so that 
“power series” fits would not be easy.) The initial conditions were picked to be 
x0 = 1, &, = 0 and the final time t, was set equal to 3 (so that more than two 
complete oscillations were included in the solution). 

COMPARISBN CIF SOLUTIONS - APPROX VS EXACl 

__-__- ---A 
0 2 

i EC) N Ii 

FIG. 4. The difference 6(r) for the damped harmonic oscillator with N = 16 in the approximating 
series. 

I- 
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Results from the computations are shown in Figs. 1 to 4, where both the approx- 
imate and exact solutions are plotted for N = 8, 12 and 16. For the case N = 16, the 
approximate solution is practically identical to the exact solution, so only the dif- 
ference 

s(t) 4 X&j - X/f(f) (39) 
is shown. 

Identical computations were also performed assuming that x(t) could be 
represented by an ordinary power series 

x(t)=x,+i,t,s + 5 Ap?. (40) 
i=2 

The analytical development for this situation is given in [2, p. 11551 and is not 
repeated here. Only the results are highlighted in Table I, where we see that the power 
series is most accurate at N = 12 and then degrades (always at the end of the interval 
0 & z < 1) as N is increased to 24. This is in direct contrast to the P:(G) series 
which, as N increases, simply matches the exact solution with greater and greater 
precision. 

The failure of the power series is easily explained, however. The matrix M becomes 
poorly conditioned as N increases so that, even with computations in double 
precision (16 decimal digits), the matrix M-’ is still determined with unsulficient 
accuracy for this application. 

A second useful comparison is given in Table II where the coefficients for both the 
power series and the P,* series are listed for the case N= 14. We see that the coef- 
ficients steadily decrease in magnitude (in an almost regular fashion) for the Pz series 
while, for the power series, they first increase (by four orders of magnitude!) and then 
decrease. The former behavior is obviously preferable. 

TABLE I 

Computational Results for the Simple Harmonic Oscillator” 

N Power series P,* series 

8 0.9 
10 0.8 
12 0.08 
14 0.4 
16 0.33 
18 3.6(!) 
20 26(!!) 
22 4 
24 3 

1.2 
1.1 

0.09 
0.009 

5 x 1om4 
1 x lo-’ 

2.7 x lo-’ 
4.0 x loms 
2.1 x 1o-9 

’ Maximum lit error 6, = max, /xki - x, / over the time interval 0 < 
t<t,=3. 
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TABLE II 

Coefficient Sets for the Simple Harmonic Oscillator 

Power series P,* series 

-1.350954323 x lo* 2.358496722 x 10-l 
5.524855061 x lo* -3.666079243 x 10-l 

-2.042959625 x 10’ 5.235500244 x 10-l 
1.983918481 x lo4 -7.227623684 x 10 ’ 

-8.688759863 x IO4 -4.008240951 x IO ’ 
1.385241641 x 10’ 7.682819215 x 10 I 
7.962823438 x lo4 2.470680959 x 10 * 

-6.567238125 x 10’ -2.552754118 x 10-l 
1.136308555 x 10” 2.615098775 x IO- 2 

-1.03603 1059 x lo6 4.332352286 x IO-* 
5.430984434 x 10’ -7.591445451 x 10 3 

-1.546488164 x 10’ -4.503003244 x 10 ’ 
1.851751331 x lo4 1.322891604 x 10 ’ 

Referring now to the error curves shown in Figs. 3 and 4 for the series solution in 
terms of Shifted Legendre Polynomials, a referee pointed out that these plots look like 
linearly independent solutions of the equations of motion with the initial conditions 
x,, = 0, &, = v0 > 0. Indeed, the two plots are virtually identical except for a change of 
scale on the ordinate axis. This is caused by the fact that only the single set of 
polynomials P:(Z) was used to construct the approximating series. As a result, the 
error is always “orthogonal” to the space spanned by the family of functions and, as 
N increases, this error is reduced in magnitude but retains its basic form. 

EXAMPLE II. RESTRICTED THREE-BODY PROBLEM 

Approximate solutions are next constructed for a variety of planar periodic orbits 
[lo] of the restricted three-body problem. Generally, we have limited ourselves to 
symmetric periodic orbits passing repeatedly near either the smaller, or both, of the 
two attracting primary masses since orbits of this type have the greatest potential for 
future space applications [ 11, 121. 

In [5 ] (in which power series approximations for these orbits were developed), the 
quantities needed for the function @ were derived from first principles. Now we will 
simply list them and refer the reader to [5] for additional detail. Since this problem 
has two degrees of freedom, we have 

41 =x, 

q2= Y9 
F,=F,=-(1 -iu)(x+lu)/+@+C1- l)/& 

(41) 

(42) 
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&=&=-I(1 -P)lr:+Plr:lY, 

K = $[i’ + 4’2 + 2(x$ - yi) + x2 + y’], (43 1 

r, is the distance between the test particle and primary P, (of mass 1 -,u), 

T, = [(x +jg2 + y2]“2 

and 

r2 is the distance between the test particle and primary P, (of mass ,D), 

rz = [(x +p - l)‘+ y2]‘12. 

The function @ is then given by 

Letting t, = 0 and t, = to, Hamilton’s Law of Varying Action takes the form 

I 
10{[(x+3)+F,]s,+[(y-1)+F,ls,+(~-y)~,+(x+L’)~,}dt 

0 

-(i - y) s, ltp - (x + j) s, 1: = 0 

in this case 

(44) 

(45) 

(46) 

(47) 

(48) 

Next, assuming that x, y, s, and s, can each be represented by series in terms of 
Shifted Legendre Polynomials, we have 

X(Z)=Xo+iOtOZ+ 5 [A+ g,PT(Z)+PT(Z)]Ai> 
i=2 

S,= 5 uj+ gjPT +P,*)aj, 
j=2 

y(z) = y, + jOtO: + 5 [fk + g,P:(a) +P:(z)] B,, 
k=2 

sy = 5 (fi + g,p: + pl*> b,, 
I=2 

where x0, y,, i. and j, denote the initial conditions and Ai (i = 2,..., N), 
B, (k = 2,..., M) are dimensionless constants to be determined. Inserting these series 
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and evaluating the resulting integrals in exactly the same way as before for 
Example I, we obtain the equation 

5 5 PjiAi + F QjkB, - Uj 
kY2 1 aj 

.j = 2 i-2 

~ R,iAi+ ~ S,,B,- V, 

(49) 

f52 
b,=O 

k=2 1 

and, since this is valid for any choice of the unknown constants a,j and b,, we finally 
get 

~ PjiAi + ~ QjkBk= Uj (j = 2,..., iv), 
i=2 k=2 

$2R,,A,+$2S,,Bk=V, (/=2,.**,M), 

(50) 

where the matrix elements are 

+ ‘O.fJfi + $ gj gi + f  gj[2 - hi] F,(i, 0) 
0 

- $ fihiFl(i* l>Y 

Q,ik4F,(k,j)-F,(j,k)+ 1-(-l)jtk+2&&(k, 1) 

+ 2&F,(k, O> + 4fi g,, 

R,i A F,(f, i) - F,(i, I) - 1 + (-l)‘+ i - 2g,F,(i, 1) 

- 2f,F,(i, O) - 4fi gi, 

s,, a t, &ffF,(“k)-+,[I +(-l)““] 
0 0 

+ f,fifk + $- g, g, + f &I2 - 'k/ F,(k3 '1 
0 

- + f,hkF,(k '1 
0 

(51) 

(52) 

(53) 

(54) 
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and the vector components on the right-hand side are 

(55) 

(56) 

Examining Eqs. (55) and (56), we now see clearly the essential difIiculty caused by 
the nonlinearities in F, and F, for the unknowns Ai and B, cannot be isolated as in 
Eq. (37) for the oscillator example. On the other hand, this is easily surmounted by 
iteration on the computer as described earlier under Approximate Solution. 

For these quite sensitive3 orbit examples, one further refinement was found to be 
necessary in order to maintain relatively high accuracy over rather long time 
intervals. We introduce, just as in [5], the idea of “patching” successive series 
solutions with each series valid over a different portion of the total interval of 
interest. In other words, for the total time interval 

O<T<Tf (57) 

the solution path is divided into a number of arcs which, with NP equal to the 
number of “patches,” all have the same time duration, 

‘0 = ‘f/NP 3 (58) 

corresponding to the basic interval 0 < t < to for Eq. (4). The new time variable 7 is 
related to f by 

r=(NP- l)t,+l (59) 

so d/d7 z d/dr. After first generating series valid for the interval 0 < r < to, the 
patching technique then proceeds by setting x0 = x(t,), i. = a(t,), y, = y(to) and 
j. = $(to) and repeating the process as before, continuing in this manner until the 
series corresponding to the interval (NP - 1) to < r Q r, have been obtained. 

In addition, whenever this method is used to produce a series representation of a 
periodic orbit that is symmetric with respect to the line y = 0 (x-axis), it is sufficient 
to take rf= r*/2 (r* = orbit period), since the portion of the orbit associated with the 

’ Small perturbations can lead to large deviations in the subsequent motion and, ultimately, destroy 
the periodicity completely. 
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interval P/2 < 5 < r* can be constructed from the portion corresponding to 
0 <r< r*/2 simply by making use of the fact that x(7* -t) = x(7) and 
y(r* - 7) = -y(s). Furthermore, such an orbit always makes precisely two perpen- 
dicular crossings of the line y = 0, one occurring at t = r = 0 and one at 7 = 7*/z; 

hence y(O) = ~(7*/2) = a(O) = i-(7*/2) = 0. 
In order to illustrate this technique, series-generated approximations for two 

example orbits are included here. First, a retrograde periodic orbit of the Earth-Moon 
system characterized by the four input values 

,u = 0.01215067, 

x0 = 1.03569, 

i’” = -1.8337259400914745, 

7* = 6.6262745758125766 

COMPARISON OF SOLUTIONS - APPROX VS EXACT 

FIG. 5. Exact (solid line) and approximate (solid circles) representations of a retrograde periodic 
orbit making relatively close passages by both primaries P, and P,. 
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COMPARISON 13F SOLUTIONS - APPROX VS EXACl 
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FIG. 6. Exact (solid line) and approximate (dotted line) solutions of i(r) for the orbit shown in 
Fig. 5. 

is considered. The in-plane stability index K for this orbit is given by K = -0.647857 
(an orbit is unstable if the associated value of K is such that 11~1 > 1). With N = M = 
12 and NP = 10, we obtain the series representation of this orbit shown in Fig. 5 as a 
sequence of small circles4. The exact orbit, produced by numerically integrating the 
appropriate differential equations of motion, is plotted as a solid line. Clearly, the 
agreement is remarkably good. 

The velocity along the orbit can also be obtained from the approximating series in 
(48) by differentiating with respect to t. To investigate the agreement for velocity, 
both the approximate and exact x velocity time histories are plotted in Fig. 6. Again 
the series representation is found to be quite accurate even though the excursions of 
i.(r) during half an orbit are rather large. 

4 The portion of this plot associated with the interval r*/2 < r < r* is formed by simply reflecting the 
portion corresponding to 0 < r < r*/2 about the x-axis. 
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Next, to examine how the error arising in connection with the PC series represen- 
tation propagates, Fig. 7 shows the difference AC 4 C- C between the series- 
generated Jacobi “constant” C, given by 

cax2+y2+2[(1-~)/r,+~/r,]-12-4;2, (60) 

and the actual Jacobi constant for this orbit, C = 0.1035623354556 172. If the series 
solution for the orbit were exact, this plot would be a horizontal line, AC(r) = 0. 
Instead, we find almost all the error is incurred during the first patch, when the orbit 
departs from the vicinity of P,. This then leads to the idea of “adaptive patching” so 
that the time duration associated with each arc is now no longer constant but depends 
upon the dynamic behavior and sensitivity of the trajectory during each patch. This. 
in fact, is a common procedure in accurate numerical integration routines 
incorporate variable step sizes. 

CClMPARISON OF SOLUTIONS - APPROX VS EXACT 

_i 
TAU/HALF’ PER N = I2 

80 0 
M = 12 

> 1. 0 
IP x 10 

which 

0 

FIG. 7. K(r) for the orbit shown in Fig. 5. 
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TABLE III 

Coefficients of the First Patch for the Retrograde Periodic Orbit 
Shown in Fig. 5 

.Y Coordinate y Coordinate 

A,, = 9.547364764 x IO- ’ B, = -2.727770587 x 10.. ’ 
A, =-I.118573513 x 10-l B, = -2.581922326 x IO-’ 
A, = -2.852167991 x 10m2 B, = 1.466627634 x 10m2 
A, = 1.312959370 x 10 ’ B, = 7.730173504 x 10m4 
A, = -3.970368837 x 10m4 B, = 4.841580894 x 1O-4 
A, = 3.075728948 x 10 4 B, = -2.042660976 x IO-” 
A, = -1.846694645 x lo-’ B, = 6.305563350 x lo-’ 
A, = 1.021304408 x 1OmJ B, = -3.221440650 x lo-” 
A, = -5.073502226 x 10 ’ B, = -1.705476150 x lo-’ 
A, = 2.129573684 x lo-’ B, = 1.953174222 x lo-’ 
A,, = -6.045594836 x 10 ’ B,, = -1.544952409 x lo-’ 
A,, = 1.327365736 x 10 -’ B,, = 8.722395044 x 10m6 
A,, = 4.250681183 x lo-’ B,, = -2.375721296 x 10 ’ 

Finally, the numerical values determined for the coefficients Ai and B, are given in 
Table III. These apply to the time interval 0 < r < -& 2*/2. Note how the coefficients 
for both the x and y series decrease over several orders of magnitude in an almost 
monotonic fashion. During each of the 10 patches, a similar behavior was observed. 
In general, the coefficients dor both the x and y coordinates ranged over 7 to 14 
orders of magnitude with the smallest variability occurring during the most sensitive 
“close approach” segments of the trajectory. 

The second example orbit is a direct periodic orbit of the Earth-Moon system 
making very close passages by both primaries and characterized by 

p = 0.01215067, 

x,, = 1.0207578217458713, 

j. = -1.0117456349247884, 

r* = 5.5770155338067978, 

(K = 0.778247). 

Taking N = M = 12 and NP = 10, we obtain the plots shown in Fig. 8. Although the 
two reljresentations of the orbit diverge a little in the left half-plane (i.e., in the 
vicinity of 5*/2), the overall agreement is quite good. This is further supported in 
Fig. 9, where both the approximate and exact y velocity time histories are plotted for 
half an orbit. The corresponding plot of AC(r) is shown in Fig. 10 
(C = 2.6695220566679699). Two jumps in the error curve are now visible, the first 
occurring when the orbit departs from the vicinity of P, and the second occurring as 
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COMPARISON OF SOLUTIONS - APPROX VS EXACT 

20.5 

I- 

FIG. 8. Exact (solid line) and approximate (solid circles) representations of a direct periodic orbit 
making very close passages by both primaries P, and PI. 

the orbit makes a close passage around Pi. The two plateaux have the values 
dC z -0.010 and AC 2 -0.042, respectively. 

For these two orbits, it is of interest to compare the computer time needed to 
perform an accurate numerical integration of the orbit with that needed to obtain 
these analytic approximations. Using the UNIVAC 1110 computer at LMSC, a 
precision numerical integration can be accomplished in less than 10 set while this 
implementation of Hamilton’s Law required 4 min 27 set for the retrograde orbit 
shown in Fig. 5 and 5 min 19 set for the direct orbit shown in Fig. 8. However, it 
should be emphasized that this technique is not simply another method of numerical 
integration but a constructive approach for generating approximate solutions of 
dynamical problems in analytic form. Hence, its merit for practical applications must 
rest ultimately on the needs and uses for such series representations. A possible use 
might be to furnish a highly accurate reference orbit in terms of a set of pre-computed 
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5 0.50 0.75 1.0 
PER N = I2 M = I2 NP : IO 

0 

FIG. 9. Exact (solid line) and approximate (dotted line) solutions of j(r) for the orbit shown in 
Fig. 8. l 

coeffkients. This would be especially attractive for computations performed on board 
a satellite which require, for their execution, an accurate (and easily updated!) 
ephemeris. 

CONCLUSIONS AND RECOMMENDATIONS 

The method presented in this paper, based on a generalization of Bailey’s treatment 
of Hamilton’s Law of Varying Action, shows promise as a technique for obtaining 
series representations characterizing the motions of dynamical systems. In [5], 
approximate solutions for three periodic orbits were determined using ordinary power 
series, as given by Eq. (40), for the x and y coordinates. There, in order to maintain 
sufficient accuracy, it was found that NP had to be rather large (-25) while N and M 
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FIG. 10. AC(r) for the orbit shown in Fig. 8. 

were kept small (=4). Thus, we were forced to use very short arcs with low order 
series approximations for each arc. 

Now, with the use of Shifted Legendre Polynomials as basis functions, the number 
of arcs has been reduced substantially (NP= 10) while the individual series length 
has been increased to high order (N = A4 = 12). Moreover, the error in the approx- 
imate representation (as measured by AC(s)), has been further decreased. Thus, the 
use of Shifted Legendre Polynomials has provided a considerable improvement in 
both the accuracy and efficiency of this method. This is particularly true in the case 
of the damped harmonic oscillator, where we found, for increasing N, no limit on the 
accuracy with which the series solution is able to replicate the exact solution. 

Based upon the results presented in this paper, a number of topics for further work 
can be suggested. 

1. Because of the close approaches to P, or P,, the use of regularized variables 
[ 13 1 should lead to improvements in accuracy and etliciency. 
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2. For this application, Shifted Legendre Polynomials seemed to be a natural 
choice because 

(i) The interval of interest, 0 < t < t,, can always be transformed to 
O<x<l. 

(ii) The orthogonality led to enormous simplifications in the subsequent 
analytical developments. 

(iii) The uniform weighting W(X) E 1 meant no additional weighting functions 
would have to be artificially introduced. 

(iv) Functions “close” to the analytic solution are not known since, for the 
orbit examples, no analytic solution is available. 

However, other sets of orthogonal functions should be examined. In particular, 
Shifted Tchebychev Polynomials c(r) [8, pp. 774, 778-7791 could be advantageous 
since the nonuniform weighting function 

W(“) = (z - .y* (61) 

should provide a cure for the higher order discontinuities presently obtained at the 
patching (or node) points. Also, trigonometric series are another obvious choice for 
representing these symmetric periodic orbits. 

3. At the “patching points,” continuity is presently required only for q(t) and 
4(t). In fact, these conditions are sufficient for exact solutions but do not constrain 
approximate solutions tightly enough. The use of these so-called spline tits should 
definitely be investigated as, in this context, demanding continuity in some (L, say, 
with 0 < L < N, M) of the higher derivatives is equivalent to reducing the number of 
unknown constants Ai, B, from N + M - 4 to N + M - (4 + 2L). 

4. By a simple extension of the previous development, three-dimensional orbits 
can also be treated. This would then give full generality to the algorithm and enable 
approximate analytic solutions to be generated for a variety of orbits of current 
interest. 

In conclusion, it is hoped that these results will serve to stimulate others to apply 
Hamilton’s Law of Varying Action to their own problems in dynamics. 

APPENDIX: USEFUL RELATIONSHIPS FOR SHIFTED LEGENDRE POLYNOMIALS 

The ordinary Legendre Polynomials P,(x) with n = 0, 1, 2,... are valid over the 
interval - 1 < x < + 1. By the transformation 

x+1 z =-; 
2 

x=22-1 (Al) 
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the interval is “shifted” to 0 < z < 1 and we speak of the Shifted Legendre 
Polynomials P:(Z). The same boundary conditions apply for both sets, namely, 

and 
P;(o) = (-1)“; P;(l) = 1 (A21 

$-f (0) = (-l)n+l n(n + 1); Z(l)=@+ l)$z, (A3) 

for the first derivatives. 
The first few polynomials are 

P,*= 1, 

PT=22-1, 

P; = 6z2 - 62 + 1, 

Pf = 2oz3 - 302* + 122- 1, 

(A4) 

and 

Pf = 7o04 - 140%) + 902* - 202 + I 

and the following recurrence relation [6, pp. 176-1781 or [8, p. 7821 is most useful 
for constructing the necessary polynomials numerically: 

(n + 1) PZ+ ,(%) = [(4n t 2)s - (2n t l)] P:(z) - nP;p 1(x). (A51 

Next, because of orthogonality, 

i 
‘P;(E) P;(z) dx = &, 

0 

where 6,, is the usual Kronecker Delta Function. 
Now, during the development of approximate solutions to dynamical problems 

using Hamilton’s Law of Varying Action, integrals of the two types 

I 1 dP* 
I 

’ dP* dP* 
-‘-P;dx; --1mdx 

o dz o dz dx 

also occur and must be evaluated. Using the known boundary conditions, we have 

= P,*(z) PZ( 2) 1; 

= 1 - (-,),+m. 
(A7) 
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Then, from [6, p. 1951, the derivative dP,*/dz can be expressed in terms of lower 
order polynomials by 

~=(4n-2)P:~,+(4n-lO)P:~,+(4n-l*)P:,+..., w3) z 

which. with the definitions 

and 

[ *] 4 integer part of * 

n+l 
LA - [ 1 2 

can be written in the convenient form 

dP* 
“=2 i (2n+3-41)Pc+,-,,. 
dx (All) 

I=1 

649) 

(AlO) 

The needed integrals can now be evaluated easily. Referring to (A7), we suppose 
n > m (if not, we simply interchange n and m so this assumption results in no loss of 
generality). Then (A8) shows that the second integral in (A7) vanishes and, 
furthermore, that m < n - 1 or n > m + 1 is required. Hence, making the final 
definitions 

pAn-m-l, 6412) 

S(p)= iT 
I 

P > 07 
, P < 0, 

for a unit step function S, the first required integral 

I ’ dP,* 
o zPZ dx = C1 - (-I)“+“) S(p) 4FF,(n, m) 

6413) 

(A141 

is obtained in closed form. This formula shows, in fact, that the integral has only the 
following two integer values 

I ’ dP* 
-P;dx= o 

I 

2 if m < n - 1 and n + m is odd 
o d* otherwise. (Al51 

The final integral (of two derivatives) which we need is calculated by inserting 
(Al 1) and using the orthogonality given by (A6) to obtain 

(I+(--1)“+“)s(q) 

4 F,(n, ml, b416) 
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where 

and 

13 min(n, m) (Al? 

q&l+m-2. (‘418) 

Note that this integral vanishes if n + m is odd and, provided q > 0, attains a simple 
set of integer values otherwise. 
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